
3
Computing with large integers

In this chapter, we review standard asymptotic notation, introduce the formal com-
putational model that we shall use throughout the rest of the text, and discuss basic
algorithms for computing with large integers.

3.1 Asymptotic notation
We review some standard notation for relating the rate of growth of functions.
This notation will be useful in discussing the running times of algorithms, and in a
number of other contexts as well.

Let f and g be real-valued functions. We shall assume that each is defined on
the set of non-negative integers, or, alternatively, that each is defined on the set
of non-negative reals. Actually, as we are only concerned about the behavior of
f (x) and g(x) as x → ∞, we only require that f (x) and g(x) are defined for all
sufficiently large x (the phrase “for all sufficiently large x” means “for some x0

and all x ≥ x0”). We further assume that g is eventually positive, meaning that
g(x) > 0 for all sufficiently large x. Then

• f = O(g) means that |f (x)| ≤ cg(x) for some positive constant c and all
sufficiently large x (read, “f is big-O of g”),

• f = Ω(g) means that f (x) ≥ cg(x) for some positive constant c and all
sufficiently large x (read, “f is big-Omega of g”),

• f = Θ(g) means that cg(x) ≤ f (x) ≤ dg(x) for some positive constants c
and d and all sufficiently large x (read, “f is big-Theta of g”),

• f = o(g) means that f (x)/g(x) → 0 as x → ∞ (read, “f is little-o of g”),
and

• f ∼ g means that f (x)/g(x) → 1 as x → ∞ (read, “f is asymptotically
equal to g”).

50

3.1 Asymptotic notation 51

Example 3.1. Let f (x) := x2 and g(x) := 2x2 − 10x + 1. Then f = O(g) and
f = Ω(g). Indeed, f = Θ(g). 2

Example 3.2. Let f (x) := x2 and g(x) := x2 − 10x + 1. Then f ∼ g. 2

Example 3.3. Let f (x) := 100x2 and g(x) := x3. Then f = o(g). 2

Note that by definition, if we write f = Ω(g), f = Θ(g), or f ∼ g, it must be the
case that f (in addition to g) is eventually positive; however, if we write f = O(g)
or f = o(g), then f need not be eventually positive.

When one writes “f = O(g),” one should interpret “· = O(·)” as a binary rela-
tion between f with g. Analogously for “f = Ω(g),” “f = Θ(g),” and “f = o(g).”

One may also write “O(g)” in an expression to denote an anonymous function
f such that f = O(g). Analogously, Ω(g), Θ(g), and o(g) may denote anonymous
functions. The expression O(1) denotes a function bounded in absolute value by
a constant, while the expression o(1) denotes a function that tends to zero in the
limit.

Example 3.4. Let f (x) := x3 − 2x2 + x − 3. One could write f (x) = x3 +O(x2).
Here, the anonymous function is g(x) := −2x2 + x− 3, and clearly g(x) = O(x2).
One could also write f (x) = x3 − (2 + o(1))x2. Here, the anonymous function
is g(x) := −1/x + 3/x2. While g = o(1), it is only defined for x > 0. This
is acceptable, since we will only regard statements such as this asymptotically, as
x→ ∞. 2

As an even further use (abuse?) of the notation, one may use the big-O, big-
Omega, and big-Theta notation for functions on an arbitrary domain, in which case
the relevant inequalities should hold throughout the entire domain. This usage
includes functions of several independent variables, as well as functions defined
on sets with no natural ordering.

EXERCISE 3.1. Show that:

(a) f = o(g) implies f = O(g) and g 6= O(f);

(b) f = O(g) and g = O(h) implies f = O(h);

(c) f = O(g) and g = o(h) implies f = o(h);

(d) f = o(g) and g = O(h) implies f = o(h).

EXERCISE 3.2. Let f and g be eventually positive functions. Show that:

(a) f ∼ g if and only if f = (1 + o(1))g;

(b) f ∼ g implies f = Θ(g);

(c) f = Θ(g) if and only if f = O(g) and f = Ω(g);

52 Computing with large integers

(d) f = Ω(g) if and only if g = O(f).

EXERCISE 3.3. Suppose f1 = O(g1) and f2 = O(g2). Show that f1 + f2 =
O(max(g1, g2)), f1f2 = O(g1g2), and that for every constant c, cf1 = O(g1).

EXERCISE 3.4. Suppose that f (x) ≤ c + dg(x) for some positive constants c and
d, and for all sufficiently large x. Show that if g = Ω(1), then f = O(g).

EXERCISE 3.5. Suppose f and g are defined on the integers i ≥ k, and that
g(i) > 0 for all i ≥ k. Show that if f = O(g), then there exists a positive constant
c such that |f (i)| ≤ cg(i) for all i ≥ k.

EXERCISE 3.6. Let f and g be eventually positive functions, and assume that
f (x)/g(x) tends to a limit L (possibly L =∞) as x→ ∞. Show that:

(a) if L = 0, then f = o(g);
(b) if 0 < L <∞, then f = Θ(g);
(c) if L =∞, then g = o(f).

EXERCISE 3.7. Let f (x) := xα(log x)β and g(x) := xγ (log x)δ, where α, β, γ, δ
are non-negative constants. Show that if α < γ, or if α = γ and β < δ, then
f = o(g).

EXERCISE 3.8. Order the following functions in x so that for each adjacent pair
f , g in the ordering, we have f = O(g), and indicate if f = o(g), f ∼ g, or
g = O(f):

x3, exx2, 1/x, x2(x + 100) + 1/x, x +
√
x, log2 x, log3 x, 2x2, x,

e−x, 2x2 − 10x + 4, ex+
√
x, 2x, 3x, x−2, x2(log x)1000.

EXERCISE 3.9. Show that:
(a) the relation “∼” is an equivalence relation on the set of eventually positive

functions;
(b) for all eventually positive functions f1, f2, g1, g2, if f1 ∼ g1 and f2 ∼ g2,

then f1 ? f2 ∼ g1 ? g2, where “?” denotes addition, multiplication, or
division;

(c) for all eventually positive functions f , g, and every α > 0, if f ∼ g, then
fα ∼ gα;

(d) for all eventually positive functions f , g, and every function h such that
h(x) → ∞ as x → ∞, if f ∼ g, then f ◦ h ∼ g ◦ h, where “◦” denotes
function composition.

EXERCISE 3.10. Show that all of the claims in the previous exercise also hold
when the relation “∼” is replaced with the relation “· = Θ(·).”

3.2 Machine models and complexity theory 53

EXERCISE 3.11. Let f , g be eventually positive functions. Show that:

(a) f = Θ(g) if and only if log f = log g + O(1);

(b) f ∼ g if and only if log f = log g + o(1).

EXERCISE 3.12. Suppose that f and g are functions defined on the integers
k, k+ 1, . . . , and that g is eventually positive. For n ≥ k, define F (n) :=

∑n
i=k f (i)

and G(n) :=
∑n
i=k g(i). Show that if f = O(g) and G is eventually positive, then

F = O(G).

EXERCISE 3.13. Suppose that f and g are piece-wise continuous on [a,∞) (see
§A4), and that g is eventually positive. For x ≥ a, define F (x) :=

∫x
a f (t) dt and

G(x) :=
∫x
a g(t) dt. Show that if f = O(g) and G is eventually positive, then

F = O(G).

EXERCISE 3.14. Suppose that f and g are functions defined on the integers
k, k + 1, . . . , and that both f and g are eventually positive. For n ≥ k, define
F (n) :=

∑n
i=k f (i) and G(n) :=

∑n
i=k g(i). Show that if f ∼ g and G(n) → ∞ as

n→ ∞, then F ∼ G.

EXERCISE 3.15. Suppose that f and g are piece-wise continuous on [a,∞) (see
§A4), and that both f and g are eventually positive. For x ≥ a, define F (x) :=
∫x
a f (t) dt and G(x) :=

∫x
a g(t) dt. Show that if f ∼ g and G(x) → ∞ as x → ∞,

then F ∼ G.

EXERCISE 3.16. Give an example of two non-decreasing functions f and g, each
mapping positive integers to positive integers, such that f 6= O(g) and g 6= O(f).

3.2 Machine models and complexity theory
When presenting an algorithm, we shall always use a high-level, and somewhat
informal, notation. However, all of our high-level descriptions can be routinely
translated into the machine-language of an actual computer. So that our theorems
on the running times of algorithms have a precise mathematical meaning, we for-
mally define an “idealized” computer: the random access machine or RAM.

A RAM consists of an unbounded sequence of memory cells

m[0],m[1],m[2], . . . ,

each of which can store an arbitrary integer, together with a program. A program
consists of a finite sequence of instructions I0, I1, . . . , where each instruction is of
one of the following types:

54 Computing with large integers

arithmetic This type of instruction is of the form γ ← α?β, where ? represents one
of the operations addition, subtraction, multiplication, or integer division
(i.e., b·/·c). The values α and β are of the form c, m[a], or m[m[a]], and
γ is of the form m[a] or m[m[a]], where c is an integer constant and a is a
non-negative integer constant. Execution of this type of instruction causes
the value α ? β to be evaluated and then stored in γ.

branching This type of instruction is of the form IF α 3 β GOTO i, where i is
the index of an instruction, and where 3 is one of the comparison opera-
tions =, 6=,<,>,≤,≥, and α and β are as above. Execution of this type of
instruction causes the “flow of control” to pass conditionally to instruction
Ii.

halt The HALT instruction halts the execution of the program.

A RAM works by executing instruction I0, and continues to execute instruc-
tions, following branching instructions as appropriate, until a HALT instruction is
reached.

We do not specify input or output instructions, and instead assume that the input
and output are to be found in memory cells at some prescribed locations, in some
standardized format.

To determine the running time of a program on a given input, we charge 1 unit
of time to each instruction executed.

This model of computation closely resembles a typical modern-day computer,
except that we have abstracted away many annoying details. However, there are
two details of real machines that cannot be ignored; namely, any real machine has
a finite number of memory cells, and each cell can store numbers only in some
fixed range.

The first limitation must be dealt with by either purchasing sufficient memory or
designing more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform compu-
tations with quite large integers—much larger than will fit into any single memory
cell of an actual machine. To deal with this limitation, we shall represent such large
integers as vectors of digits in some fixed base, so that each digit is bounded in
order to fit into a memory cell. This is discussed in more detail in the next section.
The only other numbers we actually need to store in memory cells are “small”
numbers representing array indices, counters, and the like, which we hope will fit
into the memory cells of actual machines. Below, we shall make a more precise,
formal restriction on the magnitude of numbers that may be stored in memory cells.

Even with these caveats and restrictions, the running time as we have defined
it for a RAM is still only a rough predictor of performance on an actual machine.
On a real machine, different instructions may take significantly different amounts

3.3 Basic integer arithmetic 55

of time to execute; for example, a division instruction may take much longer than
an addition instruction. Also, on a real machine, the behavior of the cache may
significantly affect the time it takes to load or store the operands of an instruction.
Finally, the precise running time of an algorithm given by a high-level description
will depend on the quality of the translation of this algorithm into “machine code.”
However, despite all of these problems, it still turns out that measuring the running
time on a RAM as we propose here is a good “first order” predictor of performance
on real machines in many cases. Also, we shall only state the running time of an
algorithm using a big-O estimate, so that implementation-specific constant factors
are anyway “swept under the rug.”

If we have an algorithm for solving a certain problem, we expect that “larger”
instances of the problem will require more time to solve than “smaller” instances,
and a general goal in the analysis of any algorithm is to estimate the rate of growth
of the running time of the algorithm as a function of the size of its input. For this
purpose, we shall simply measure the size of an input as the number of memory
cells used to represent it. Theoretical computer scientists sometimes equate the
notion of “efficient” with “polynomial time” (although not everyone takes theo-
retical computer scientists very seriously, especially on this point): a polynomial-
time algorithm is one whose running time on inputs of size n is at most anb + c,
for some constants a, b, and c (a “real” theoretical computer scientist will write
this as nO(1)). Furthermore, we also require that for a polynomial-time algorithm,
all numbers stored in memory are at most a′nb

′
+ c′ in absolute value, for some

constants a′, b′, and c′. Even for algorithms that are not polynomial time, we shall
insist that after executing t instructions, all numbers stored in memory are at most
a′(n + t)b

′
+ c′ in absolute value, for some constants a′, b′, and c′.

Note that in defining the notion of polynomial time on a RAM, it is essential
that we restrict the magnitude of numbers that may be stored in the machine’s
memory cells, as we have done above. Without this restriction, a program could
perform arithmetic on huge numbers, being charged just one unit of time for each
arithmetic operation—not only is this intuitively “wrong,” it is possible to come up
with programs that solve some problems using a polynomial number of arithmetic
operations on huge numbers, and these problems cannot otherwise be solved in
polynomial time (see §3.6).

3.3 Basic integer arithmetic
We will need algorithms for performing arithmetic on very large integers. Since
such integers will exceed the word-size of actual machines, and to satisfy the for-
mal requirements of our random access model of computation, we shall represent

56 Computing with large integers

large integers as vectors of digits in some base B, along with a bit indicating the
sign. That is, for a ∈ Z, if we write

a = ±
k−1
∑

i=0

aiB
i = ±(ak−1 · · · a1a0)B,

where 0 ≤ ai < B for i = 0, . . . , k − 1, then a will be represented in memory as
a data structure consisting of the vector of base-B digits a0, . . . , ak−1, along with
a “sign bit” to indicate the sign of a. To ensure a unique representation, if a is
non-zero, then the high-order digit ak−1 in this representation should be non-zero.

For our purposes, we shall consider B to be a constant, and moreover, a power of
2. The choice of B as a power of 2 is convenient for a number of technical reasons.

A note to the reader: If you are not interested in the low-level details of algo-
rithms for integer arithmetic, or are willing to take them on faith, you may safely
skip ahead to §3.3.5, where the results of this section are summarized.

We now discuss in detail basic arithmetic algorithms for unsigned (i.e., non-
negative) integers — these algorithms work with vectors of base-B digits, and
except where explicitly noted, we do not assume that the high-order digits of the
input vectors are non-zero, nor do these algorithms ensure that the high-order digit
of the output vector is non-zero. These algorithms can be very easily adapted to
deal with arbitrary signed integers, and to take proper care that the high-order digit
of the vector representing a non-zero number is itself non-zero (the reader is asked
to fill in these details in some of the exercises below). All of these algorithms
can be implemented directly in a programming language that provides a “built-in”
signed integer type that can represent all integers of absolute value less thanB2, and
that supports the basic arithmetic operations (addition, subtraction, multiplication,
integer division). So, for example, using the C or Java programming language’s
int type on a typical 32-bit computer, we could take B = 215. The resulting
software would be reasonably efficient and portable, but certainly not the fastest
possible.

Suppose we have the base-B representations of two unsigned integers a and b.
We present algorithms to compute the base-B representation of a + b, a − b, a · b,
ba/bc, and a mod b. To simplify the presentation, for integers x, y with y 6= 0, we
denote by QuoRem(x, y) the quotient/remainder pair (bx/yc, x mod y).

3.3.1 Addition
Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers. Assume that
k ≥ ` ≥ 1 (if k < `, then we can just swap a and b). The sum c := a + b is of the

3.3 Basic integer arithmetic 57

form c = (ckck−1 · · · c0)B. Using the standard “paper-and-pencil” method (adapted
from base-10 to base-B, of course), we can compute the base-B representation of
a + b in time O(k), as follows:

carry← 0
for i← 0 to ` − 1 do

tmp← ai + bi + carry, (carry, ci) ← QuoRem(tmp,B)
for i← ` to k − 1 do

tmp← ai + carry, (carry, ci) ← QuoRem(tmp,B)
ck ← carry

Note that in every loop iteration, the value of carry is 0 or 1, and the value tmp
lies between 0 and 2B − 1.

3.3.2 Subtraction
Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers. Assume that
k ≥ ` ≥ 1. To compute the difference c := a − b, we may use the same algorithm
as above, but with the expression “ai + bi” replaced by “ai − bi.” In every loop
iteration, the value of carry is 0 or −1, and the value of tmp lies between −B and
B − 1. If a ≥ b, then ck = 0 (i.e., there is no carry out of the last loop iteration);
otherwise, ck = −1 (and b− a = Bk − (ck−1 · · · c0)B, which can be computed with
another execution of the subtraction routine).

3.3.3 Multiplication
Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers, with k ≥ 1 and
` ≥ 1. The product c := a · b is of the form (ck+`−1 · · · c0)B, and may be computed
in time O(k`) as follows:

for i← 0 to k + ` − 1 do ci ← 0
for i← 0 to k − 1 do

carry← 0
for j ← 0 to ` − 1 do

tmp← aibj + ci+j + carry
(carry, ci+j) ← QuoRem(tmp,B)

ci+` ← carry

Note that at every step in the above algorithm, the value of carry lies between 0
and B − 1, and the value of tmp lies between 0 and B2 − 1.

58 Computing with large integers

3.3.4 Division with remainder
Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers, with k ≥ 1,
` ≥ 1, and b`−1 6= 0. We want to compute q and r such that a = bq + r and
0 ≤ r < b. Assume that k ≥ `; otherwise, a < b, and we can just set q ← 0 and
r ← a. The quotient q will have at most m := k − ` + 1 base-B digits. Write
q = (qm−1 · · · q0)B.

At a high level, the strategy we shall use to compute q and r is the following:

r ← a

for i← m − 1 down to 0 do
qi ← br/Bibc
r ← r − Bi · qib

One easily verifies by induction that at the beginning of each loop iteration, we
have 0 ≤ r < Bi+1b, and hence each qi will be between 0 and B − 1, as required.

Turning the above strategy into a detailed algorithm takes a bit of work. In
particular, we want an easy way to compute br/Bibc. Now, we could in theory
just try all possible choices for qi — this would take time O(B`), and viewing B
as a constant, this is O(`). However, this is not really very desirable from either a
practical or theoretical point of view, and we can do much better with just a little
effort.

We shall first consider a special case; namely, the case where ` = 1. In this case,
the computation of the quotient br/Bibc is facilitated by the following theorem,
which essentially tells us that this quotient is determined by the two high-order
digits of r:

Theorem 3.1. Let x and y be integers such that

0 ≤ x = x′2n + s and 0 < y = y′2n

for some integers n, s, x′, y′, with n ≥ 0 and 0 ≤ s < 2n. Then bx/yc = bx′/y′c.

Proof. We have
x

y
=
x′

y′
+

s

y′2n
≥
x′

y′
.

It follows immediately that bx/yc ≥ bx′/y′c.
We also have

x

y
=
x′

y′
+

s

y′2n
<
x′

y′
+

1
y′
≤
(⌊

x′

y′

⌋

+
y′ − 1
y′

)

+
1
y′
≤
⌊

x′

y′

⌋

+ 1.

Thus, we have x/y < bx′/y′c + 1, and hence, bx/yc ≤ bx′/y′c. 2

3.3 Basic integer arithmetic 59

From this theorem, one sees that the following algorithm correctly computes the
quotient and remainder in time O(k) (in the case ` = 1):

hi← 0
for i← k − 1 down to 0 do

tmp← hi ·B + ai
(qi, hi) ← QuoRem(tmp, b0)

output the quotient q = (qk−1 · · · q0)B and the remainder hi

Note that in every loop iteration, the value of hi lies between 0 and b0 ≤ B − 1,
and the value of tmp lies between 0 and B · b0 + (B − 1) ≤ B2 − 1.

That takes care of the special case where ` = 1. Now we turn to the general case
` ≥ 1. In this case, we cannot so easily get the digits qi of the quotient, but we can
still fairly easily estimate these digits, using the following:

Theorem 3.2. Let x and y be integers such that

0 ≤ x = x′2n + s and 0 < y = y′2n + t

for some integers n, s, t, x′, y′ with n ≥ 0, 0 ≤ s < 2n, and 0 ≤ t < 2n. Further,
suppose that 2y′ ≥ x/y. Then

bx/yc ≤ bx′/y′c ≤ bx/yc + 2.

Proof. We have x/y ≤ x/y′2n, and so bx/yc ≤ bx/y′2nc, and by the previous
theorem, bx/y′2nc = bx′/y′c. That proves the first inequality.

For the second inequality, first note that from the definitions, we have x/y ≥
x′/(y′+1), which implies x′y−xy′−x ≤ 0. Further, 2y′ ≥ x/y implies 2yy′−x ≥ 0.
So we have 2yy′ − x ≥ 0 ≥ x′y − xy′ − x, which implies x/y ≥ x′/y′ − 2, and
hence bx/yc ≥ bx′/y′c − 2. 2

Based on this theorem, we first present an algorithm for division with remain-
der that works if we assume that b is appropriately “normalized,” meaning that
b`−1 ≥ 2w−1, where B = 2w. This algorithm is shown in Fig. 3.1.

Some remarks are in order.

1. In line 4, we compute qi, which by Theorem 3.2 is greater than or equal to
the true quotient digit, but exceeds this value by at most 2.

2. In line 5, we reduce qi if it is obviously too big.

3. In lines 6–10, we compute

(ri+` · · · ri)B ← (ri+` · · · ri)B − qib.

In each loop iteration, the value of tmp lies between −(B2 − B) and B − 1,
and the value carry lies between −(B − 1) and 0.

60 Computing with large integers

1. for i← 0 to k − 1 do ri ← ai
2. rk ← 0
3. for i← k − ` down to 0 do
4. qi ← b(ri+`B + ri+`−1)/b`−1c
5. if qi ≥ B then qi ← B − 1
6. carry← 0
7. for j ← 0 to ` − 1 do
8. tmp← ri+j − qibj + carry
9. (carry, ri+j) ← QuoRem(tmp,B)

10. ri+` ← ri+` + carry
11. while ri+` < 0 do
12. carry← 0
13. for j ← 0 to ` − 1 do
14. tmp← ri+j + bi + carry
15. (carry, ri+j) ← QuoRem(tmp,B)
16. ri+` ← ri+` + carry
17. qi ← qi − 1
18. output the quotient q = (qk−` · · · q0)B

and the remainder r = (r`−1 · · · r0)B

Fig. 3.1. Division with Remainder Algorithm

4. If the estimate qi is too large, this is manifested by a negative value of ri+`
at line 10. Lines 11–17 detect and correct this condition: the loop body
here executes at most twice; in lines 12–16, we compute

(ri+` · · · ri)B ← (ri+` · · · ri)B + (b`−1 · · · b0)B.

Just as in the algorithm in §3.3.1, in every iteration of the loop in lines
13–15, the value of carry is 0 or 1, and the value tmp lies between 0 and
2B − 1.

It is easily verified that the running time of the above algorithm isO(`·(k−`+1)).

Finally, consider the general case, where b may not be normalized. We multiply
both a and b by an appropriate value 2w

′
, with 0 ≤ w′ < w, obtaining a′ := a2w

′

and b′ := b2w
′
, where b′ is normalized; alternatively, we can use a more efficient,

special-purpose “left shift” algorithm to achieve the same effect. We then compute
q and r′ such that a′ = b′q + r′, using the division algorithm in Fig. 3.1. Observe
that q = ba′/b′c = ba/bc, and r′ = r2w

′
, where r = a mod b. To recover r, we

3.3 Basic integer arithmetic 61

simply divide r′ by 2w
′
, which we can do either using the above “single precision”

division algorithm, or by using a special-purpose “right shift” algorithm. All of
this normalizing and denormalizing takes time O(k + `). Thus, the total running
time for division with remainder is still O(` · (k − ` + 1)).

EXERCISE 3.17. Work out the details of algorithms for arithmetic on signed inte-
gers, using the above algorithms for unsigned integers as subroutines. You should
give algorithms for addition, subtraction, multiplication, and division with remain-
der of arbitrary signed integers (for division with remainder, your algorithm should
compute ba/bc and a mod b). Make sure your algorithms correctly compute the
sign bit of the results, and also strip any leading zero digits from the results.

EXERCISE 3.18. Work out the details of an algorithm that compares two signed
integers a and b, determining which of a < b, a = b, or a > b holds.

EXERCISE 3.19. Suppose that we run the division with remainder algorithm in
Fig. 3.1 for ` > 1 without normalizing b, but instead, we compute the value qi in
line 4 as follows:

qi ← b(ri+`B2 + ri+`−1B + ri+`−2)/(b`−1B + b`−2)c.

Show that qi is either equal to the correct quotient digit, or the correct quotient digit
plus 1. Note that a limitation of this approach is that the numbers involved in the
computation are larger than B2.

EXERCISE 3.20. Work out the details for an algorithm that shifts a given unsigned
integer a to the left by a specified number of bits s (i.e., computes b := a · 2s).
The running time of your algorithm should be linear in the number of digits of the
output.

EXERCISE 3.21. Work out the details for an algorithm that shifts a given unsigned
integer a to the right by a specified number of bits s (i.e., computes b := ba/2sc).
The running time of your algorithm should be linear in the number of digits of the
output. Now modify your algorithm so that it correctly computes ba/2sc for signed
integers a.

EXERCISE 3.22. This exercise is for C/Java programmers. Evaluate the C/Java
expressions

(-17) % 4; (-17) & 3;

and compare these values with (−17) mod 4. Also evaluate the C/Java expressions

(-17) / 4; (-17) >> 2;

62 Computing with large integers

and compare with b−17/4c. Explain your findings.

EXERCISE 3.23. This exercise is also for C/Java programmers. Suppose that
values of type int are stored using a 32-bit 2’s complement representation, and
that all basic arithmetic operations are computed correctly modulo 232, even if an
“overflow” happens to occur. Also assume that double precision floating point
has 53 bits of precision, and that all basic arithmetic operations give a result with
a relative error of at most 2−53. Also assume that conversion from type int to
double is exact, and that conversion from double to int truncates the fractional
part. Now, suppose we are given int variables a, b, and n, such that 1 < n < 230,
0 ≤ a < n, and 0 ≤ b < n. Show that after the following code sequence is
executed, the value of r is equal to (a · b) mod n:

int q;
q = (int) ((((double) a) * ((double) b)) / ((double) n));
r = a*b - q*n;
if (r >= n)

r = r - n;
else if (r < 0)

r = r + n;

3.3.5 Summary
We now summarize the results of this section. For an integer a, we define its bit
length, or simply, its length, which we denote by len(a), to be the number of bits
in the binary representation of |a|; more precisely,

len(a) :=
{

blog2|a|c + 1 if a 6= 0,
1 if a = 0.

If len(a) = `, we say that a is an `-bit integer. Notice that if a is a positive, `-bit
integer, then log2 a < ` ≤ log2 a + 1, or equivalently, 2`−1 ≤ a < 2`.

Assuming that arbitrarily large integers are represented as described at the begin-
ning of this section, with a sign bit and a vector of base-B digits, where B is a
constant power of 2, we may state the following theorem.

Theorem 3.3. Let a and b be arbitrary integers.

(i) We can compute a ± b in time O(len(a) + len(b)).

(ii) We can compute a · b in time O(len(a) len(b)).

(iii) If b 6= 0, we can compute the quotient q := ba/bc and the remainder
r := a mod b in time O(len(b) len(q)).

3.3 Basic integer arithmetic 63

Note the bound O(len(b) len(q)) in part (iii) of this theorem, which may be
significantly less than the bound O(len(a) len(b)). A good way to remember this
bound is as follows: the time to compute the quotient and remainder is roughly the
same as the time to compute the product bq appearing in the equality a = bq + r.

This theorem does not explicitly refer to the base B in the underlying implemen-
tation. The choice of B affects the values of the implied big-O constants; while in
theory, this is of no significance, it does have a significant impact in practice.

From now on, we shall (for the most part) not worry about the implementa-
tion details of long-integer arithmetic, and will just refer directly to this theorem.
However, we will occasionally exploit some trivial aspects of our data structure for
representing large integers. For example, it is clear that in constant time, we can
determine the sign of a given integer a, the bit length of a, and any particular bit of
the binary representation of a; moreover, as discussed in Exercises 3.20 and 3.21,
multiplications and divisions by powers of 2 can be computed in linear time via
“left shifts” and “right shifts.” It is also clear that we can convert between the base-
2 representation of a given integer and our implementation’s internal representation
in linear time (other conversions may take longer—see Exercise 3.32).

We wish to stress the point that efficient algorithms on large integers should
run in time bounded by a polynomial in the bit lengths of the inputs, rather than
their magnitudes. For example, if the input to an algorithm is an `-bit integer n,
and if the algorithm runs in time O(`2), it will easily be able to process 1000-bit
inputs in a reasonable amount of time (a fraction of a second) on a typical, modern
computer. However, if the algorithm runs in time, say, O(n1/2), this means that
on 1000-bit inputs, it will take roughly 2500 computing steps, which even on the
fastest computer available today or in the foreseeable future, will still be running
long after our solar system no longer exists.

A note on notation: “len” and “log.” In expressing the running times
of algorithms in terms of an input a, we generally prefer to write len(a)
rather than log a. One reason is esthetic: writing len(a) stresses the fact
that the running time is a function of the bit length of a. Another reason is
technical: for big-O estimates involving functions on an arbitrary domain,
the appropriate inequalities should hold throughout the domain, and for
this reason, it is very inconvenient to use functions, like log, which vanish
or are undefined on some inputs.

EXERCISE 3.24. Let a, b ∈ Z with a ≥ b > 0, and let q := ba/bc. Show that
len(a) − len(b) − 1 ≤ len(q) ≤ len(a) − len(b) + 1.

64 Computing with large integers

EXERCISE 3.25. Let n1, . . . , nk be positive integers. Show that

k
∑

i=1

len(ni) − k ≤ len
(

k
∏

i=1

ni

)

≤
k
∑

i=1

len(ni).

EXERCISE 3.26. Show that given integers n1, . . . , nk, with each ni > 1, we can
compute the product n :=

∏

i ni in time O(len(n)2).

EXERCISE 3.27. Show that given integers a, n1, . . . , nk, with each ni > 1, where
0 ≤ a < n :=

∏

i ni, we can compute (a mod n1, . . . , a mod nk) in timeO(len(n)2).

EXERCISE 3.28. Show that given integers n1, . . . , nk, with each ni > 1, we can
compute (n/n1, . . . , n/nk), where n :=

∏

i ni, in time O(len(n)2).

EXERCISE 3.29. This exercise develops an algorithm to compute b
√
nc for a given

positive integer n. Consider the following algorithm:

k ← b(len(n) − 1)/2c, m← 2k

for i← k − 1 down to 0 do
if (m + 2i)2 ≤ n then m← m + 2i

output m

(a) Show that this algorithm correctly computes b
√
nc.

(b) In a straightforward implementation of this algorithm, each loop itera-
tion takes time O(len(n)2), yielding a total running time of O(len(n)3).
Give a more careful implementation, so that each loop iteration takes time
O(len(n)), yielding a total running time is O(len(n)2).

EXERCISE 3.30. Modify the algorithm in the previous exercise so that given pos-
itive integers n and e, with n ≥ 2e, it computes bn1/ec in time O(len(n)3/e).

EXERCISE 3.31. An integer n > 1 is called a perfect power if n = ab for some
integers a > 1 and b > 1. Using the algorithm from the previous exercise, design
an efficient algorithm that determines if a given n is a perfect power, and if it is,
also computes a and b such that n = ab, where a > 1, b > 1, and a is as small as
possible. Your algorithm should run in time O(`3 len(`)), where ` := len(n).

EXERCISE 3.32. Show how to convert (in both directions) in time O(len(n)2)
between the base-10 representation and our implementation’s internal representa-
tion of an integer n.

3.4 Computing in Zn
Let n be a positive integer. For every α ∈ Zn, there exists a unique integer
a ∈ {0, . . . , n − 1} such that α = [a]n; we call this integer a the canonical

3.4 Computing in Zn 65

representative of α, and denote it by rep(α). For computational purposes, we
represent elements of Zn by their canonical representatives.

Addition and subtraction in Zn can be performed in time O(len(n)): given
α, β ∈ Zn, to compute rep(α+β), we first compute the integer sum rep(α)+ rep(β),
and then subtract n if the result is greater than or equal to n; similarly, to com-
pute rep(α − β), we compute the integer difference rep(α) − rep(β), adding n if
the result is negative. Multiplication in Zn can be performed in time O(len(n)2):
given α, β ∈ Zn, we compute rep(α · β) as rep(α) rep(β) mod n, using one integer
multiplication and one division with remainder.

A note on notation: “rep,” “mod,” and “[·]n.” In describing algorithms,
as well as in other contexts, if α, β are elements of Zn, we may write, for
example, γ ← α + β or γ ← αβ, and it is understood that elements of
Zn are represented by their canonical representatives as discussed above,
and arithmetic on canonical representatives is done modulo n. Thus, we
have in mind a “strongly typed” language for our pseudo-code that makes
a clear distinction between integers in the set {0, . . . , n − 1} and elements
of Zn. If a ∈ Z, we can convert a to an object α ∈ Zn by writing α ← [a]n,
and if a ∈ {0, . . . , n−1}, this type conversion is purely conceptual, involv-
ing no actual computation. Conversely, if α ∈ Zn, we can convert α to
an object a ∈ {0, . . . , n − 1}, by writing a ← rep(α); again, this type
conversion is purely conceptual, and involves no actual computation. It
is perhaps also worthwhile to stress the distinction between a mod n and
[a]n—the former denotes an element of the set {0, . . . , n − 1}, while the
latter denotes an element of Zn.

Another interesting problem is exponentiation in Zn: given α ∈ Zn and a non-
negative integer e, compute αe ∈ Zn. Perhaps the most obvious way to do this is to
iteratively multiply by α a total of e times, requiring time O(e len(n)2). For small
values of e, this is fine; however, a much faster algorithm, the repeated-squaring
algorithm, computes αe using just O(len(e)) multiplications in Zn, thus taking
time O(len(e) len(n)2).

This method is based on the following observation. Let e = (b`−1 · · · b0)2 be
the binary expansion of e (where b0 is the low-order bit). For i = 0, . . . , `, define
ei := be/2ic; the binary expansion of ei is ei = (b`−1 · · · bi)2. Also define βi := αei

for i = 0, . . . , `, so β` = 1 and β0 = αe. Then we have

ei = 2ei+1 + bi and βi = β2
i+1 · α

bi for i = 0, . . . , ` − 1.

This observation yields the following algorithm for computing αe:

The repeated-squaring algorithm. On input α, e, where α ∈ Zn and e is a non-
negative integer, do the following, where e = (b`−1 · · · b0)2 is the binary expansion
of e:

66 Computing with large integers

β ← [1]n
for i← ` − 1 down to 0 do

β ← β2

if bi = 1 then β ← β · α
output β

It is clear that when this algorithm terminates, we have β = αe, and that the
running-time estimate is as claimed above. Indeed, the algorithm uses ` squarings
in Zn, and at most ` additional multiplications in Zn.

Example 3.5. Suppose e = 37 = (100101)2. The above algorithm performs the
following operations in this case:

// computed exponent (in binary)
β ← [1] // 0
β ← β2, β ← β · α // 1
β ← β2 // 10
β ← β2 // 100
β ← β2, β ← β · α // 1001
β ← β2 // 10010
β ← β2, β ← β · α // 100101 . 2

The repeated-squaring algorithm has numerous applications. We mention a few
here, but we will see many more later on.

Computing multiplicative inverses in Zp. Suppose we are given a prime p and an
element α ∈ Z∗p, and we want to compute α−1. By Euler’s theorem (Theorem 2.13),
we have αp−1 = 1, and multiplying this equation by α−1, we obtain αp−2 = α−1.
Thus, we can use the repeated-squaring algorithm to compute α−1 by raising α to
the power p − 2. This algorithm runs in time O(len(p)3). While this is reasonably
efficient, we will develop an even more efficient method in the next chapter, using
Euclid’s algorithm (which also works with any modulus, not just a prime modulus).

Testing quadratic residuosity. Suppose we are given an odd prime p and an
element α ∈ Z∗p, and we want to test whether α ∈ (Z∗p)2. By Euler’s criterion
(Theorem 2.21), we have α ∈ (Z∗p)2 if and only if α(p−1)/2 = 1. Thus, we can
use the repeated-squaring algorithm to test if α ∈ (Z∗p)2 by raising α to the power
(p − 1)/2. This algorithm runs in time O(len(p)3). While this is also reasonably
efficient, we will develop an even more efficient method later in the text (in Chap-
ter 12).

Testing for primality. Suppose we are given an integer n > 1, and we want
to determine whether n is prime or composite. For large n, searching for prime
factors of n is hopelessly impractical. A better idea is to use Euler’s theorem,

3.4 Computing in Zn 67

combined with the repeated-squaring algorithm: we know that if n is prime, then
every non-zero α ∈ Zn satisfies αn−1 = 1. Conversely, if n is composite, there
exists a non-zero α ∈ Zn such that αn−1 6= 1 (see Exercise 2.27). This suggests the
following “trial and error” strategy for testing if n is prime:

repeat k times
choose α ∈ Zn \ {[0]}
compute β ← αn−1

if β 6= 1 output “composite” and halt

output “maybe prime”

As stated, this is not a fully specified algorithm: we have to specify the loop-
iteration parameter k, and more importantly, we have to specify a procedure for
choosing α in each loop iteration. One approach might be to just try α = [1], [2],
[3], Another might be to choose α at random in each loop iteration: this would
be an example of a probabilistic algorithm (a notion we shall discuss in detail in
Chapter 9). In any case, if the algorithm outputs “composite,” we may conclude
that n is composite (even though the algorithm does not find a non-trivial factor of
n). However, if the algorithm completes all k loop iterations and outputs “maybe
prime,” it is not clear what we should conclude: certainly, we have some reason to
suspect that n is prime, but not really a proof; indeed, it may be the case that n is
composite, but we were just unlucky in all of our choices for α. Thus, while this
rough idea does not quite give us an effective primality test, it is not a bad start, and
is the basis for several effective primality tests (a couple of which we shall discuss
in detail in Chapters 10 and 21).

EXERCISE 3.33. The repeated-squaring algorithm we have presented here
processes the bits of the exponent from left to right (i.e., from high order to low
order). Develop an algorithm for exponentiation in Zn with similar complexity that
processes the bits of the exponent from right to left.

EXERCISE 3.34. Show that given a prime p, α ∈ Zp, and an integer e ≥ p, we can
compute αe in time O(len(e) len(p) + len(p)3).

The following exercises develop some important efficiency improvements to the
basic repeated-squaring algorithm.

EXERCISE 3.35. The goal of this exercise is to develop a “2t-ary” variant of the
above repeated-squaring algorithm, in which the exponent is effectively treated as
a number in base 2t, for some parameter t, rather than in base 2. Let α ∈ Zn and
let e be a positive integer of length `. Let us write e in base 2t as e = (ek · · · e0)2t ,
where ek 6= 0. Consider the following algorithm:

68 Computing with large integers

compute a table of values T [0 . . . 2t − 1],
where T [j] := αj for j = 0, . . . , 2t − 1

β ← T [ek]
for i← k − 1 down to 0 do

β ← β2t · T [ei]

(a) Show that this algorithm correctly computes αe, and work out the imple-
mentation details; in particular, show that it may be implemented in such a
way that it uses at most ` squarings and 2t + `/t + O(1) additional multi-
plications in Zn.

(b) Show that, by appropriately choosing the parameter t, we can bound the
number of multiplications in Zn (besides the squarings) by O(`/ len(`)).
Thus, from an asymptotic point of view, the cost of exponentiation is essen-
tially the cost of about ` squarings in Zn.

(c) Improve the algorithm so that it only uses no more than ` squarings and
2t−1 + `/t + O(1) additional multiplications in Zn. Hint: build a table that
contains only the odd powers of α among α0, α1, . . . , α2t−1.

EXERCISE 3.36. Suppose we are given α1, . . . , αk ∈ Zn, along with non-negative
integers e1, . . . , ek, where len(ei) ≤ ` for i = 1, . . . , k. Show how to compute
β := α

e1
1 · · · α

ek
k , using at most ` squarings and ` + 2k additional multiplications

in Zn. Your algorithm should work in two phases: the first phase uses only the
values α1, . . . , αk, and performs at most 2k multiplications in Zn; in the second
phase, the algorithm computes β, using the exponents e1, . . . , ek, along with the
data computed in the first phase, and performs at most ` squarings and ` additional
multiplications in Zn.

EXERCISE 3.37. Suppose that we are to compute αe, where α ∈ Zn, for many
exponents e of length at most `, but with α fixed. Show that for every positive
integer parameter k, we can make a pre-computation (depending on α, `, and k)
that uses at most ` squarings and 2k additional multiplications in Zn, so that after
the pre-computation, we can compute αe for every exponent e of length at most `
using at most `/k + O(1) squarings and `/k + O(1) additional multiplications in
Zn. Hint: use the algorithm in the previous exercise.

EXERCISE 3.38. Suppose we are given α ∈ Zn, along with non-negative integers
e1, . . . , er, where len(ei) ≤ ` for i = 1, . . . , r, and r = O(len(`)). Using the
previous exercise, show how to compute (αe1 , . . . , αer) using O(`) multiplications
in Zn.

EXERCISE 3.39. Suppose we are given α ∈ Zn, along with integers m1, . . . ,mr,

3.5 Faster integer arithmetic (∗) 69

with each mi > 1. Let m :=
∏

imi. Also, for i = 1, . . . , r, let m∗i := m/mi.
Show how to compute (αm

∗
1 , . . . , αm

∗
r) usingO(len(r)`) multiplications in Zn, where

` := len(m). Hint: divide and conquer. Note that if r = O(len(`)), then using the
previous exercise, we can solve this problem using just O(`) multiplications.

EXERCISE 3.40. Let k be a constant, positive integer. Suppose we are given
α1, . . . , αk ∈ Zn, along with non-negative integers e1, . . . , ek, where len(ei) ≤ ` for
i = 1, . . . , k. Show how to compute the value αe1

1 · · · α
ek
k , using at most ` squarings

and O(`/ len(`)) additional multiplications in Zn. Hint: develop a 2t-ary version
of the algorithm in Exercise 3.36.

3.5 Faster integer arithmetic (∗)
The quadratic-time algorithms presented in §3.3 for integer multiplication and divi-
sion are by no means the fastest possible. The next exercise develops a faster
multiplication algorithm.

EXERCISE 3.41. Suppose we have two positive integers a and b, each of length
at most `, such that a = a12k + a0 and b = b12k + b0, where 0 ≤ a0 < 2k and
0 ≤ b0 < 2k. Then

ab = a1b122k + (a0b1 + a1b0)2k + a0b0.

Show how to compute the product ab in time O(`), given the products a0b0, a1b1,
and (a0 − a1)(b0 − b1). From this, design a recursive algorithm that computes ab
in time O(`log2 3). (Note that log2 3 ≈ 1.58.)

The algorithm in the previous exercise is also not the best possible. In fact, it is
possible to multiply two integers of length at most ` on a RAM in time O(`), but
we do not explore this any further for the moment (see §3.6).

The following exercises explore the relationship between integer multiplication
and related problems. We assume that we have an algorithm that multiplies two
integers of length at most ` in time at most M (`). It is convenient (and reasonable)
to assume that M is a well-behaved complexity function. By this, we mean that
M maps positive integers to positive real numbers, such that for some constant
γ ≥ 1, and all positive integers a and b, we have

1 ≤
M (a + b)

M (a) +M (b)
≤ γ.

EXERCISE 3.42. Show that if M is a well-behaved complexity function, then it is
strictly increasing.

70 Computing with large integers

EXERCISE 3.43. Show that if N (`) := M (`)/` is a non-decreasing function, and
M (2`)/M (`) = O(1), then M is a well-behaved complexity function.

EXERCISE 3.44. Let α > 0, β ≥ 1, γ ≥ 0, δ ≥ 0 be real constants. Show that

M (`) := α`β len(`)γ len(len(`))δ

is a well-behaved complexity function.

EXERCISE 3.45. Show that given integers n > 1 and e > 1, we can compute ne in
time O(M (len(ne))).

EXERCISE 3.46. Give an algorithm for Exercise 3.26 whose running time is
O(M (len(n)) len(k)). Hint: divide and conquer.

EXERCISE 3.47. In the previous exercise, suppose all the inputs ni have the same
length, and that M (`) = α`β , where α and β are constants with α > 0 and β > 1.
Show that your algorithm runs in time O(M (len(n))).

EXERCISE 3.48. We can represent a “floating point” number ẑ as a pair (a, e),
where a and e are integers — the value of ẑ is the rational number a2e, and we
call len(a) the precision of ẑ. We say that ẑ is a k-bit approximation of a real
number z if ẑ has precision k and ẑ = (1 + ε)z for some |ε| ≤ 2−k+1. Show
that given positive integers b and k, we can compute a k-bit approximation of 1/b
in time O(M (k)). Hint: using Newton iteration, show how to go from a t-bit
approximation of 1/b to a (2t − 2)-bit approximation of 1/b, making use of just
the high-order O(t) bits of b, in time O(M (t)). Newton iteration is a general
method of iteratively approximating a root of an equation f (x) = 0 by starting
with an initial approximation x0, and computing subsequent approximations by
the formula xi+1 = xi − f (xi)/f ′(xi), where f ′(x) is the derivative of f (x). For
this exercise, apply Newton iteration to the function f (x) = x−1 − b.

EXERCISE 3.49. Using the result of the previous exercise, show that, given pos-
itive integers a and b of bit length at most `, we can compute ba/bc and a mod b
in time O(M (`)). From this we see that, up to a constant factor, division with
remainder is no harder than multiplication.

EXERCISE 3.50. Using the result of the previous exercise, give an algorithm for
Exercise 3.27 that runs in time O(M (len(n)) len(k)). Hint: divide and conquer.

EXERCISE 3.51. Give an algorithm for Exercise 3.29 whose running time is
O(M (len(n))). Hint: Newton iteration.

EXERCISE 3.52. Suppose we have an algorithm that computes the square of an
`-bit integer in time at most S(`), where S is a well-behaved complexity function.

3.6 Notes 71

Show how to use this algorithm to compute the product of two arbitrary integers of
length at most ` in time O(S(`)).

EXERCISE 3.53. Give algorithms for Exercise 3.32 whose running times are
O(M (`) len(`)), where ` := len(n). Hint: divide and conquer.

3.6 Notes
Shamir [89] shows how to factor an integer in polynomial time on a RAM, but
where the numbers stored in the memory cells may have exponentially many
bits. As there is no known polynomial-time factoring algorithm on any realistic
machine, Shamir’s algorithm demonstrates the importance of restricting the sizes
of numbers stored in the memory cells of our RAMs to keep our formal model
realistic.

The most practical implementations of algorithms for arithmetic on large inte-
gers are written in low-level “assembly language,” specific to a particular machine’s
architecture (e.g., the GNU Multi-Precision library GMP, available at gmplib.
org). Besides the general fact that such hand-crafted code is more efficient than
that produced by a compiler, there is another, more important reason for using
assembly language. A typical 32-bit machine often comes with instructions that
allow one to compute the 64-bit product of two 32-bit integers, and similarly,
instructions to divide a 64-bit integer by a 32-bit integer (obtaining both the quo-
tient and remainder). However, high-level programming languages do not (as a
rule) provide any access to these low-level instructions. Indeed, we suggested in
§3.3 using a value for the base B of about half the word-size of the machine, in
order to avoid overflow. However, if one codes in assembly language, one can
take B to be much closer, or even equal, to the word-size of the machine. Since
our basic algorithms for multiplication and division run in time quadratic in the
number of base-B digits, the effect of doubling the bit-length of B is to decrease
the running time of these algorithms by a factor of four. This effect, combined
with the improvements one might typically expect from using assembly-language
code, can easily lead to a five- to ten-fold decrease in the running time, compared
to an implementation in a high-level language. This is, of course, a significant
improvement for those interested in serious “number crunching.”

The “classical,” quadratic-time algorithms presented here for integer multiplica-
tion and division are by no means the best possible: there are algorithms that are
asymptotically faster. We saw this in the algorithm in Exercise 3.41, which was
originally invented by Karatsuba [54] (although Karatsuba is one of two authors
on this paper, the paper gives exclusive credit for this particular result to Karat-
suba). That algorithm allows us to multiply two integers of length at most ` in time

http://gmplib.org
http://gmplib.org

72 Computing with large integers

O(`log2 3). The fastest known algorithm for multiplying such integers on a RAM
runs in time O(`), and is due to Schönhage. It actually works on a very restricted
type of RAM called a “pointer machine” (see Exercise 12, Section 4.3.3 of Knuth
[56]). See Exercise 17.25 later in this text for a much simpler (but heuristic) O(`)
multiplication algorithm.

Another model of computation is that of Boolean circuits. In this model of
computation, one considers families of Boolean circuits (with, say, the usual “and,”
“or,” and “not” gates) that compute a particular function—for every input length,
there is a different circuit in the family that computes the function on inputs that
are bit strings of that length. One natural notion of complexity for such circuit
families is the size of the circuit (i.e., the number of gates and wires in the circuit),
which is measured as a function of the input length. For many years, the smallest
known Boolean circuit that multiplies two integers of length at most ` was of size
O(` len(`) len(len(`))). This result was due to Schönhage and Strassen [86]. More
recently, Fürer showed how to reduce this to O(` len(`)2O(log∗ `)) [38]. Here, the
value of log∗ n is defined as the minimum number of applications of the function
log2 to the number n required to obtain a number that is less than or equal to 1.
The function log∗ is an extremely slow growing function, and is a constant for all
practical purposes.

It is hard to say which model of computation, the RAM or circuits, is “better.”
On the one hand, the RAM very naturally models computers as we know them
today: one stores small numbers, like array indices, counters, and pointers, in
individual words of the machine, and processing such a number typically takes
a single “machine cycle.” On the other hand, the RAM model, as we formally
defined it, invites a certain kind of “cheating,” as it allows one to stuff O(len(`))-
bit integers into memory cells. For example, even with the simple, quadratic-time
algorithms for integer arithmetic discussed in §3.3, we can choose the base B to
have len(`) bits, in which case these algorithms would run in time O((`/ len(`))2).
However, just to keep things simple, we have chosen to view B as a constant (from
a formal, asymptotic point of view).

In the remainder of this text, unless otherwise specified, we shall always use
the classical O(`2) bounds for integer multiplication and division. These have the
advantages of being simple and of being reasonably reliable predictors of actual
performance for small to moderately sized inputs. For relatively large numbers,
experience shows that the classical algorithms are definitely not the best—Karat-
suba’s multiplication algorithm, and related algorithms for division, are superior
on inputs of a thousand bits or so (the exact crossover depends on myriad imple-
mentation details). The even “faster” algorithms discussed above are typically not
interesting unless the numbers involved are truly huge, of bit length around 105–
106. Thus, the reader should bear in mind that for serious computations involving

3.6 Notes 73

very large numbers, the faster algorithms are very important, even though this text
does not discuss them at great length.

For a good survey of asymptotically fast algorithms for integer arithmetic, see
Chapter 9 of Crandall and Pomerance [30], as well as Chapter 4 of Knuth [56].

